

Redes IPv6 Only


Wanderson Modesto

ceptrobr nichr egibr

Licença de uso do material

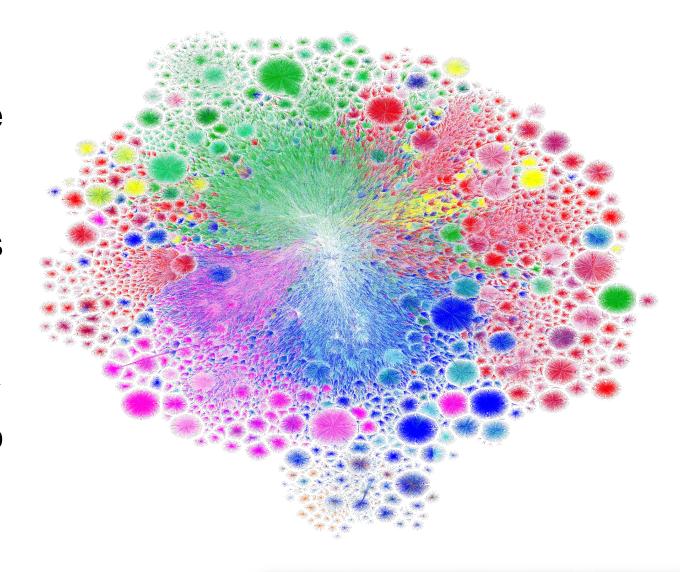
Esta apresentação está disponível sob a licença

Creative Commons
Atribuição – Não a Obras Derivadas (by-nd)
http://creativecommons.org/licenses/by-nd/3.0/br/legalcode

Você pode:

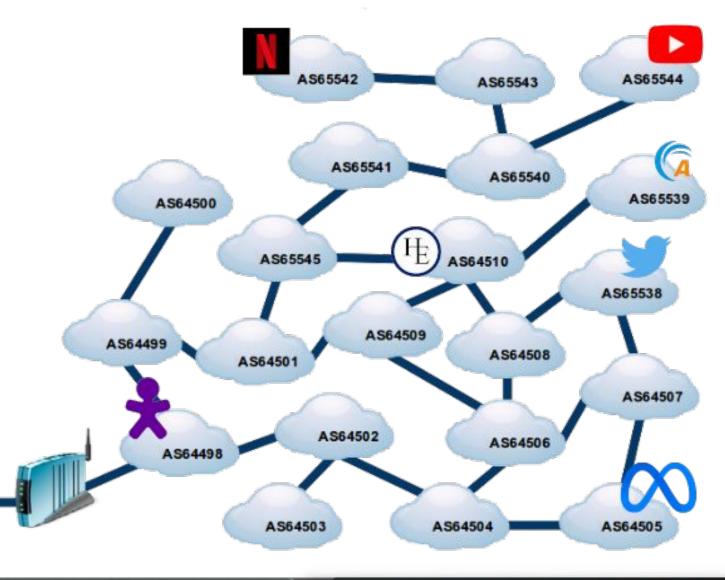
- Compartilhar copiar, distribuir e transmitir a obra.
- Fazer uso comercial da obra.
- Sob as seguintes condições:

Atribuição — Ao distribuir essa apresentação, você deve deixar claro que ela faz parte do **Workshop de IPv6** do CEPTRO.br/NIC.br, e que os originais podem ser obtidos em **http://ceptro.br**. Você deve fazer isso sem sugerir que nós damos algum aval à sua instituição, empresa, site ou curso.


Vedada a criação de obras derivadas — Você não pode modificar essa apresentação, nem criar apresentações ou outras obras baseadas nela.

Se tiver dúvidas, ou quiser obter permissão para utilizar o material de outra forma, entre em contato pelo e-mail: info@nic.br.

Estrutura da Internet ceptrobr nichr egibr


Estrutura da Internet

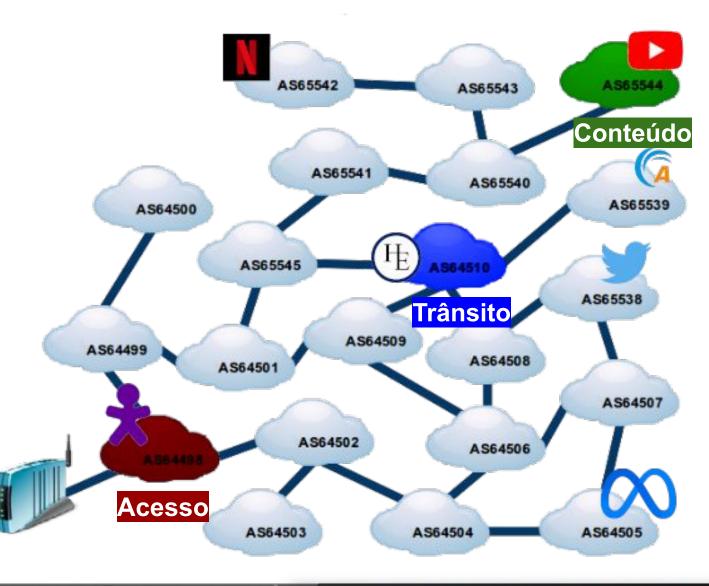
- É uma rede de redes.
- Mais de 70 mil redes se comunicando.
- Interligadas umas às outras em diferentes composições.
- Trafega dados de uma origem a um determinado destino.

Redes Independentes

- Sistemas Autônomo
 - AS Autonomous System
- ASN
 - Identificador único
 - Antes 16 bits
 - Agora 32 bits

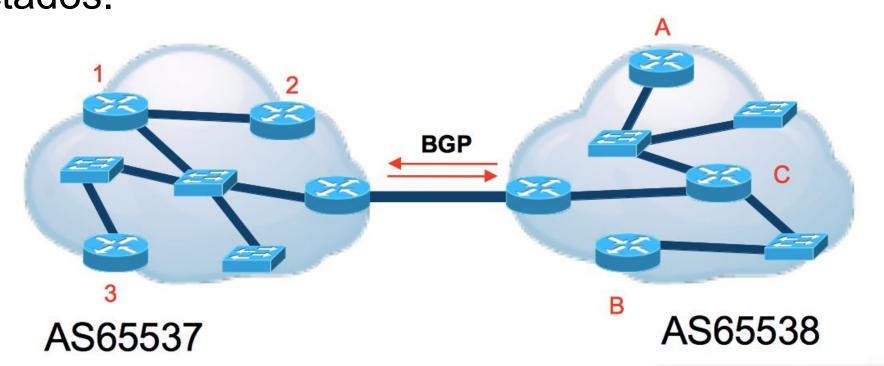
Tipos de Provedores

Provedor de Acesso


Conecta usuários finais

Provedor de Trânsito

Conecta outros provedores

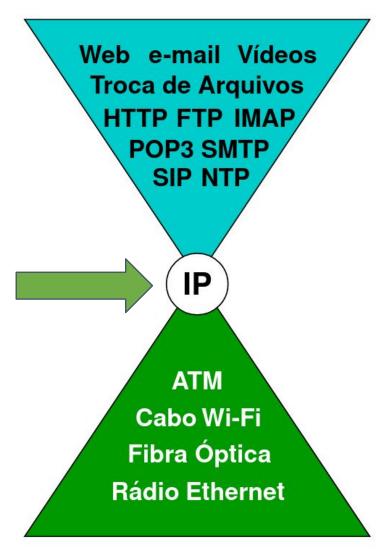

Provedor de Conteúdo

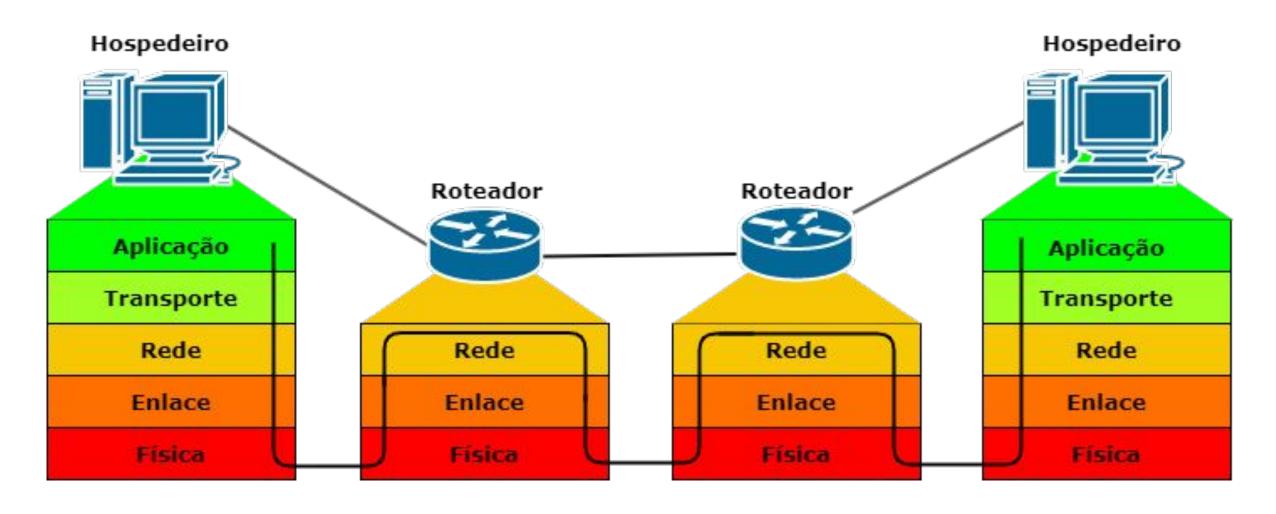
 Fornece informações e conteúdo na rede

Caminhos na Internet

 Os ASes usam Protocolo de Roteamento Externo (como o BGP) para ensinar uns aos outros a quais redes estão conectados.

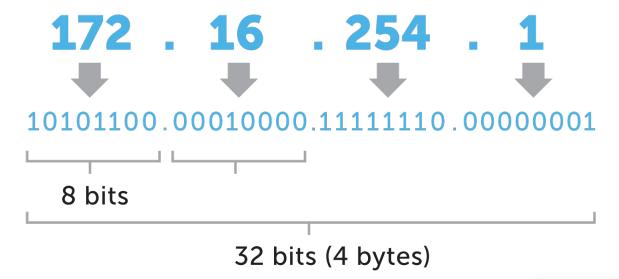
Caminhos na Internet


- Os caminhos são rotas.
- Se não tiver um caminho, não tem como se comunicar.
- Nem todas as rotas são:
 - Aceitas
 - Ativadas
 - Enviadas
- Existe uma seleção
- A seleção depende: do roteador, seu funcionamento e sua configuração.


Como as Rotas são geradas

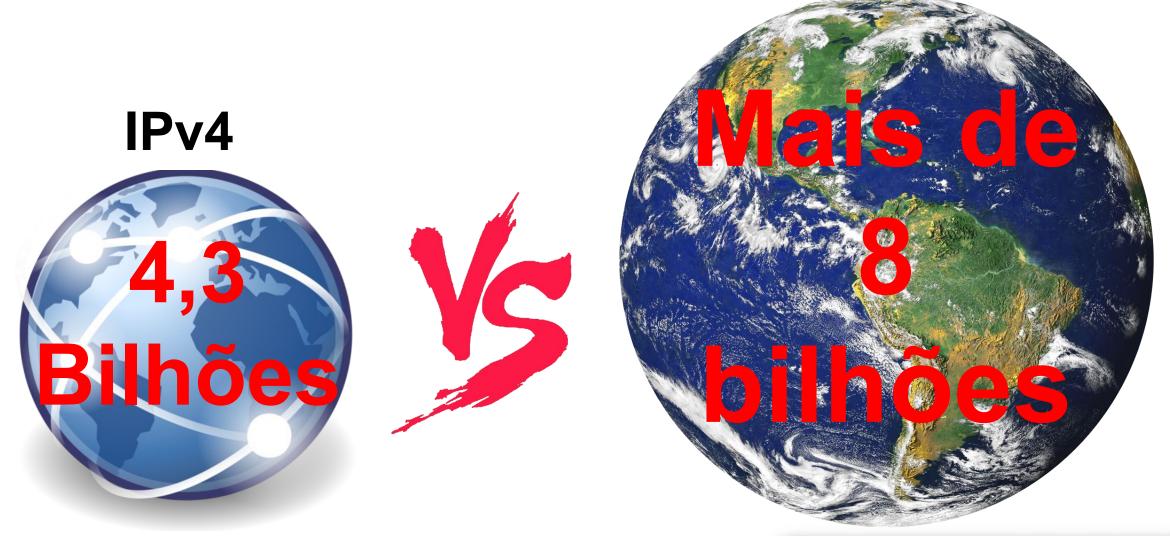
- Modelo de camadas TCP/IP
- As rotas são feitas na camada de rede
- Utilizam os protocolos:
 - o IPv4
 - o IPv6
- A camada de enlace possui um endereço que permite se comunicar no link e tem relação com a camada de rede

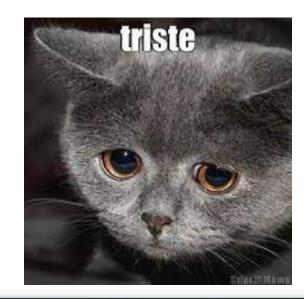
Aplicação Transporte Rede **Enlace Física**



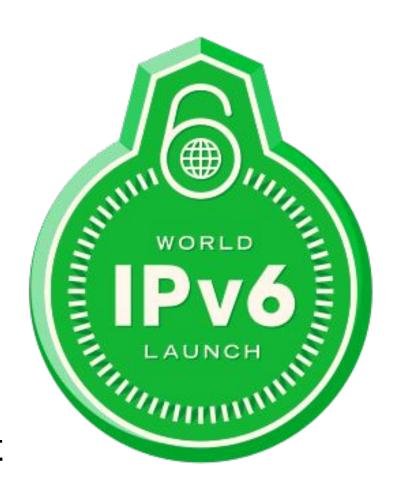
Como os Pacotes seguem as Rotas

- RFC 791 (1981)
- Na Internet desde 01/01/1983
- Ainda em ampla utilização
- Criado para prover duas funções básicas
 - Fragmentação
 - Endereçamento/Identificação


- 32 bits
- Divididos em 4 octetos (grupos de 8 bits) separados por "."
- 4.294.967.296 de endereços
- Os campos vão de 0 à 255


IPv4 - O que não foi previsto?

- O crescimento das redes
 - Possível esgotamento de endereços
- Tabela de roteamento
- Segurança de dados
- Prioridade na entrega de pacotes

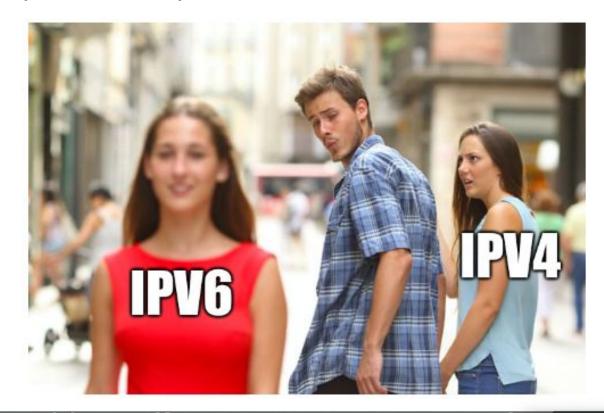

População

Não tem endereços IPv4 públicos suficientes para atender o mundo inteiro!!!

- RFC 2460 (1998)
- Questões a serem abordadas:
 - Escalabilidade;
 - Segurança;
 - Configuração e administração de rede;
 - Suporte a QoS;
 - Mobilidade;
 - Políticas de roteamento;
 - Transição.
- Atualmente em implantação na Internet

- 128 bits
- Utiliza caracteres **Hexadecimais** (0 à F)
- Divididos em 8 Hextetos (16 bits) separados por ":"
- Cada campo vai de 0 à FFFF

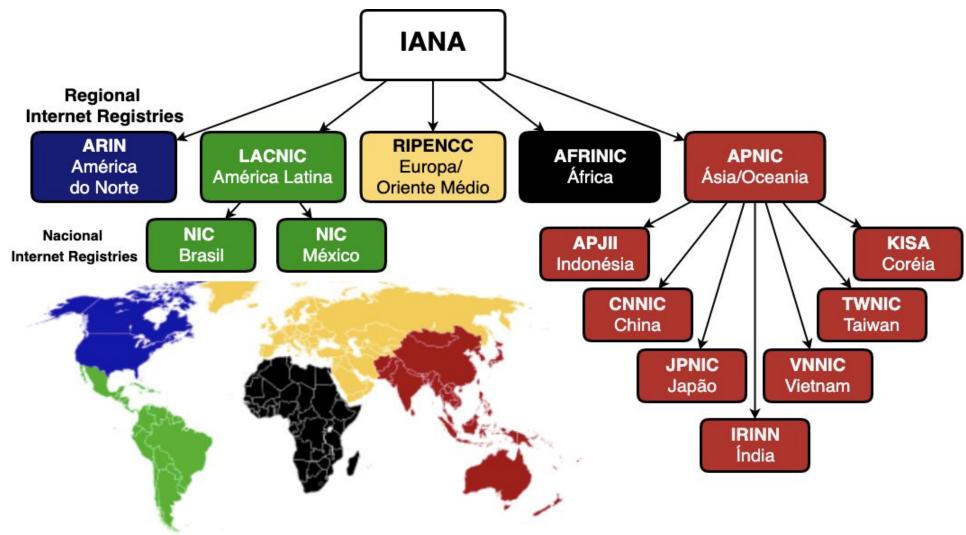
2001:0db8:0000:0000:0000:cade:cafe:84c1


16 bits

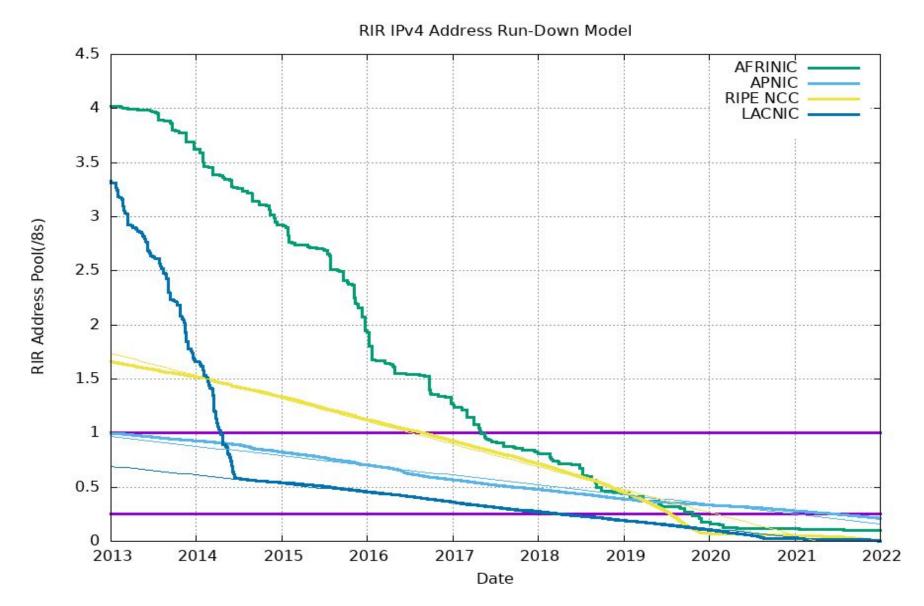
2001:0db8::cade:cafe:84c1

~ 56 octilhões (5,6x10²⁸) de endereços IP por ser humano.

• ~ 79 octilhões (7,9x10²⁸) de vezes a quantidade de endereços


IPv4.

Situação Atual do IPv6 no Brasil e no Mundo


ceptrobr nicbr cgibr

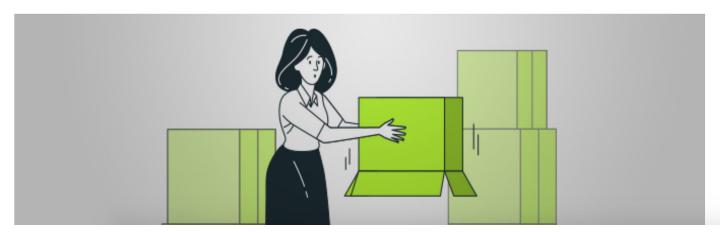
Quem distribui os endereços IPs?

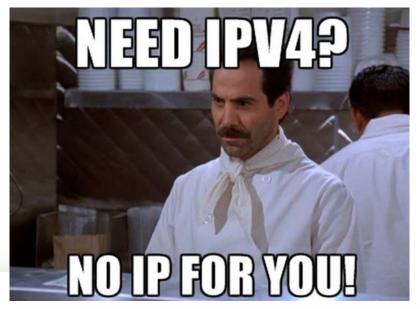
Quem distribui os endereços IPs?

- Fim do estoque mundial de IPv4 em **2011**.
- Os últimos 5 blocos /8 distribuídos igualmente.
- Sobraram somente os estoques regionais.
- Cada região possui sua gerência de blocos.
- LACNIC esgotou seu estoque IPv4 em 2020

Fonte: https://www.potaroo.net/tools/ipv4/plotend.png

Quem distribui os endereços IPs?

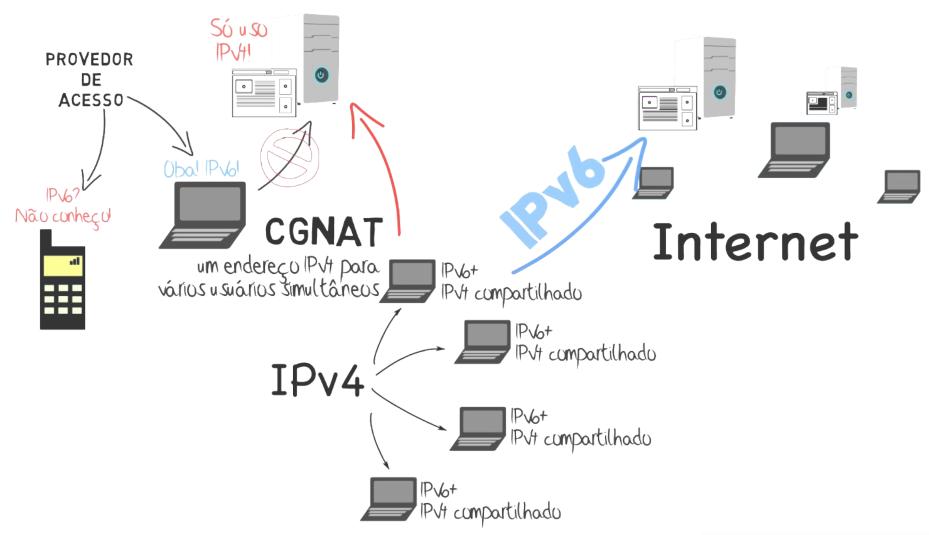


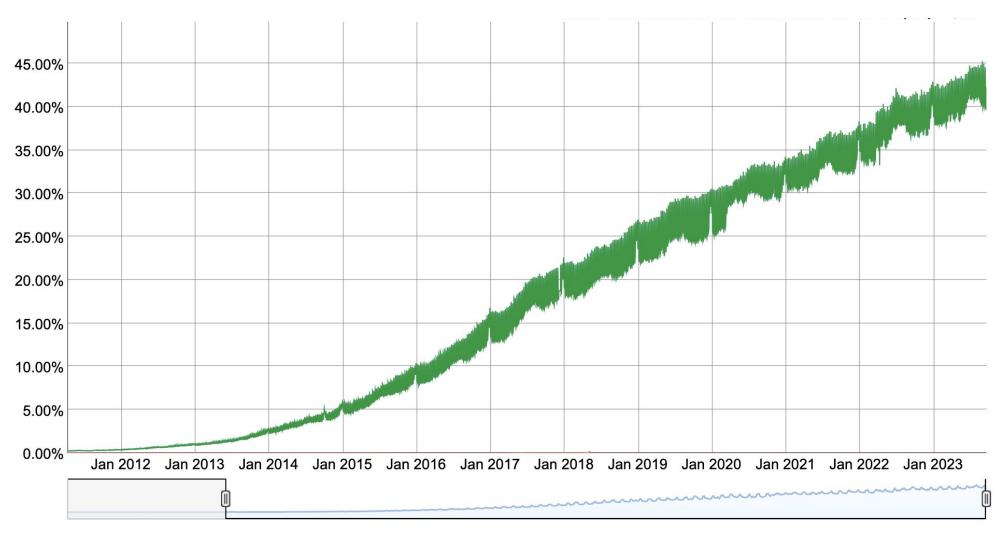

Home > Esgotamento do IPv4: O LACNIC designou o último bloco

Institucional

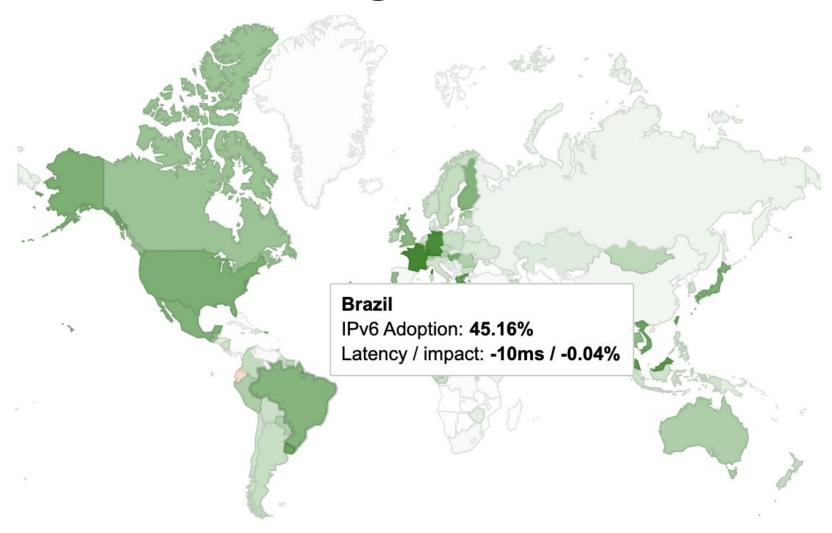
Esgotamento do IPv4: O LACNIC designou o último bloco

28/08/2020


Por que implantar o IPv6?

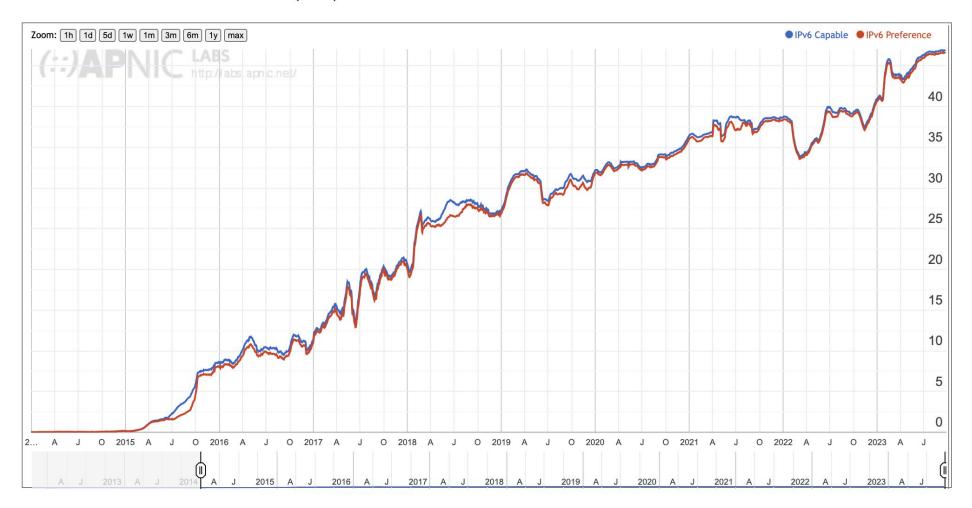

- A Internet continua crescendo!
- Mundo:
 - 4,9 bilhões usuários de Internet
 - 62% da população
- Crescimento de mais de 1200% desde 2000
- Brasil:
 - 16% dos domicílios não possuem acesso a Internet

Fontes:


https://www.zippia.com/advice/how-many-people-use-the-internet/https://cetic.br/pt/tics/domicilios/2024/domicilios/A4/

Situação Atual

Fonte: https://www.google.com/intl/en/ipv6/statistics.html



Fonte: https://www.google.com/intl/en/ipv6/statistics.html

	Posição *	↑	País/Região ↑↓	Adoção do IPv6 ↑↓	Crescimento	Crescimento mensal	$\uparrow\downarrow$
		1	India	68.71%	≥ 0.08%	≥ 0.43%	
facebo		2	United States	61.82%	≥ 0.67%	≥ 0.07%	
	ok	3	Brazil	47.81%	7 0.11%	7 0.13%	
		4	Vietnam	57.81%	⊅ 0.07%	≥ 0.06%	
		5	Mexico	43.68%	≥ 0.43%	7 0.77%	
		6	Thailand	51.49%	7 0.13%	> 0.23%	
		7	Germany	56.97%	→ 0.24%	2.46 %	
		8	France	61.36%	≥ 0.21%	7 0.37%	
		9	Malaysia	67.09%	≥ 0.41%	≥ 0.04%	
		10	Japan	56.33%	⊅ 0.06%	> 0.03%	


Fonte: https://www.facebook.com/ipv6/

Use of IPv6 for Brazil (BR)

Fonte: https://stats.labs.apnic.net/ipv6/BR

IPv6 Per-Country Deployment for AS26599: TELEFONICA BRASIL S.A, Brazil (BR)

Fonte: https://stats.labs.apnic.net/ipv6/AS26599?c=BR&x=1&s=0&p=0&w=30&s=1

IPv6 Per-Country Deployment for AS28573: Claro NXT Telecomunicacoes Ltda, Brazil (BR)


Fonte: https://stats.labs.apnic.net/ipv6/AS28573?c=BR&x=1&s=0&p=0&w=30&s=1

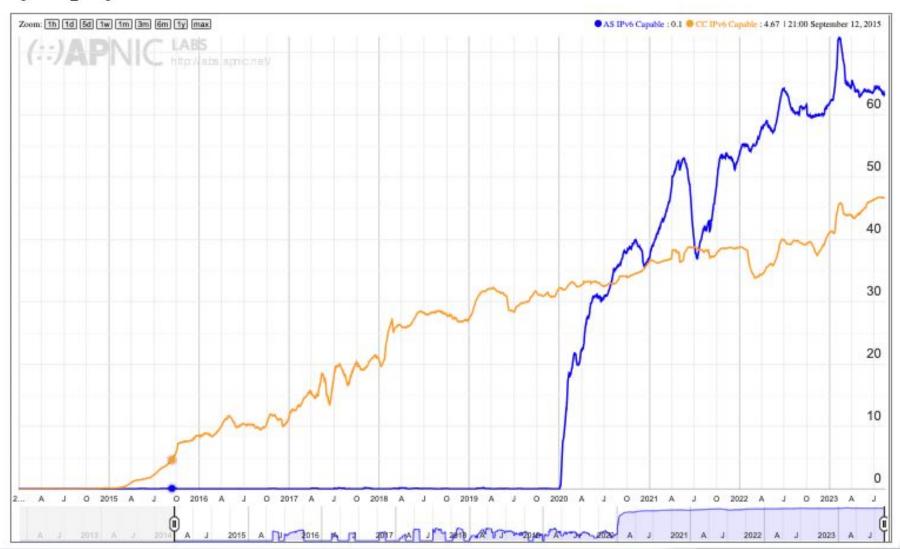
IPv6 Per-Country Deployment for AS26615: TIM SA, Brazil (BR)

Fonte: https://stats.labs.apnic.net/ipv6/AS26615?c=BR&x=1&s=0&p=0&w=30&s=1

IPv6 Per-Country Deployment for AS7738: V tal, Brazil (BR)

Fonte: https://stats.labs.apnic.net/ipv6/AS7738?c=BR&x=1&s=0&p=0&w=30&s=1

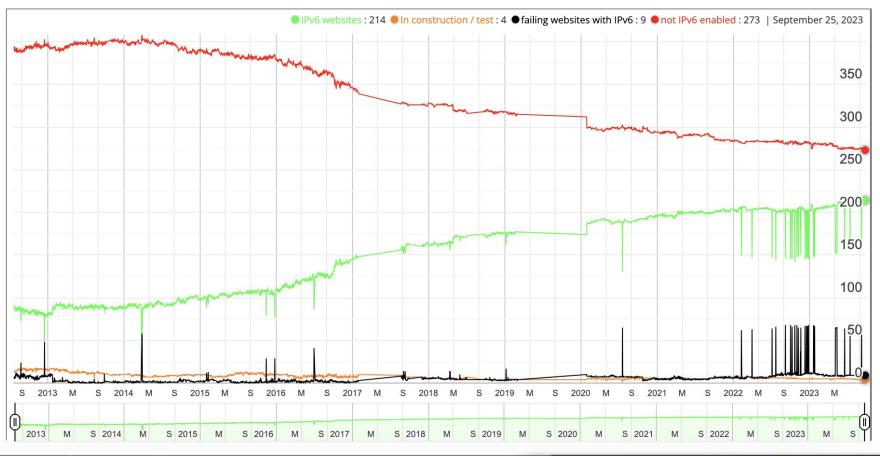
IPv6 Per-Country Deployment for AS28126: BRISANET SERVICOS DE TELECOMUNICACOES LTDA, Brazil (BR)



IPv6 Per-Country Deployment for AS28343: UNIFIQUE TELECOMUNICACOES SA, Brazil (BR)

Qual é a situação do IPv6 nos ISPs?

IPv6 Per-Country Deployment for AS28598: MOB SERVICOS DE TELECOMUNICACOES S.A., Brazil (BR)



Qual é a situação do IPv6 nos conteúdos?

Display Content Data 🐧

500 sites
 mais
 acessados no
 mundo

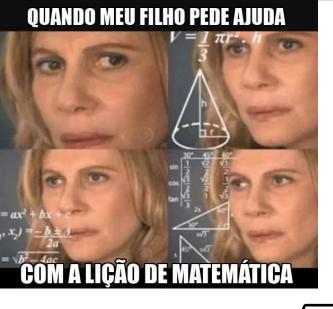
214 possuemIPv6

Endereçamento de IPv6

ceptrobr nichr egibr

Vamos entender como trabalhar com o endereço IPv6

Revisão


Binário			Decimal	Hexidecimal	
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	0	6	6
0	1	1	1	7	7
1	0	0	0	8	8
1	0	0	1	9	9
1	0	1	0	10	A
1	0	1	1	11	В
1	1	0	0	12	С
1	1	0	1	13	D
1	1	1	0	14	E
1	1	1	1	15	F

IPv6

Vamos entender como o IPv6 é formado

2001:0DB8:AD1F:25E2:CADE:CAFE:F0CA:84C1

- São 8 campos separados por ":"
- Cada campo é composto de 4 números hexadecimais
- Cada hexadecimal é composto por 4 bits
 - Cada bit possui um valor posicional

IPv6

2001:db8::/32

```
Posição Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

Valor

2 0 0 0 0 0 0 1
```

IPv6

- Na representação de um endereço IPv6 é permitido:
 - Utilizar caracteres maiúsculos ou minúsculos
 - Pode se intercalar entre maiúsculos ou minúsculos
 - Sugestão: faça todos iguais para ficar fácil de entender
 - Aplicar regras de abreviação
 - Sempre aplicado ao número 0
 - Existem 3 regras

Regras de Abreviação

- Primeira regra: Omitir os zeros à esquerda
 - Antes: 2001:0DB8:0000:BEBA:0000:0000:0000:C0CA
 - Depois: 2001:**DB8**:0000:BEBA:0000:0000:0000:COCA
- Segunda regra: Grupo formado por zeros pode virar um 0
 - Antes: 2001:0DB8:0000:BEBA:0000:0000:0000:C0CA
 - Depois: 2001:0DB8:0:BEBA:0:0:0:C0CA

Regras de Abreviação

- Terceira regra: Representar dois ou mais campos formados por zeros contínuos por "::". Só pode ser utilizado uma vez
 - Antes: 2001:0DB8:0000:BEBA:0000:0000:0000:COCA
 - Depois: 2001:0DB8:0000:BEBA::C0CA

- Aplicando todas as regras
 - Antes: 2001:0DB8:0000:BEBA:0000:0000:0000:COCA
 - Depois: 2001:DB8:0:BEBA::COCA

Regras de Abreviação

E neste caso:

2001:0000:0000:BEBA:0000:0000:0000:COCA

Pode ser assim 2001::BEBA::COCA?

2001::BEBA::C0CA?

- Ambiguidade!
 - Duas possibilidades:

2001:0000:0000:BEBA:0000:0000:0000:COCA

2001:0000:0000:0000:BEBA:0000:0000:COCA

Prefixo IPv6

- Representação em escala decimal
- Contagem de quantos bits fazem parte da rede
- Como trabalhar com prefixo?

```
2001:db8:: /32
Endereço Prefixo
```

Como fica URL em IPv6

- No IPv4
 - ":" separa a porta
 - o http://192.160.0.6:80
- No IPv6
 - http://[2001:12ff:0:4::22]/index.html
 - http://[2001:12ff:0:4::22]:8080
 - Existem outras formas mas está é a mais utilizada

Tipos de endereços IPv6

- Existem no IPv6 três tipos de endereços definidos:
 - Unicast → Identificação Individual
 - Anycast → Identificação Seletiva
 - Multicast → Identificação em Grupo
 - Não existe mais Broadcast!!!

Unicast

- Global
 - o 2000::/3
 - Globalmente roteável (similar aos endereços públicos IPv4);
 - 13% do total de endereços possíveis;
 - \circ 245 = 35.184.372.088.832 redes /48 distintas.

Unicast

- Link local
 - o FE80::/64
 - Deve ser utilizado apenas localmente;
 - Atribuído automaticamente (autoconfiguração stateless);

Unicast

- Unique local
 - COO::/7
 - Prefixo com alta probabilidade de ser único
 - Utilizado apenas na comunicação dentro de um enlace ou entre um conjunto limitado de enlaces
 - Não é esperado que seja roteado na Internet

Anycast

- Identifica um grupo de interfaces
- Entrega o pacote apenas para a interface mais perto da origem.
- Atribuídos a partir de endereços unicast
- Possíveis utilizações:
 - Descobrir serviços na rede (DNS, proxy HTTP, etc.);
 - Balanceamento de carga;

Multicast

- FF00::/8
- Identifica um grupo de interfaces.
- O suporte a multicast é obrigatório em todos os nós IPv6.
- Usado para funções que antes eram do broadcast

Multicast

Endereço	Escopo	Descrição	
FF01::1	Interface	Todas as interfaces (all-nodes)	
FF01::2	Interface	Todos os roteadores (all-routers)	
FF02::1	Enlace	Todos os nós (all-nodes)	
FF02::2	Enlace	Todos os roteadores (all-routers)	
FF02::5	Enlace	Roteadores OSFP	
FF02::6	Enlace	Roteadores OSPF designados	
FF02::7	Enlace	Roteadores RIP	
FF02::D	Enlace	Roteadores PIM	
FF02::1:2	Enlace	Agentes DHCP	
FF02::1:FFXX:XXXX	Enlace	Solicited-node	
FF05::2	Site	Todos os roteadores (all-routers)	
FF05::1:3	Site	Servidores DHCP em um site	
FF05::1:4	Site	Agentes DHCP em um site	
FF0X::101	Variado	NTP (Network Time Protocol)	

Multicast

- Do mesmo modo que no IPv4, os endereços IPv6 são atribuídos a interfaces físicas e não aos nós.
- Com o IPv6 é possível atribuir a uma única interface múltiplos endereços, independentemente do seu tipo.

Configurando endereços IPv6 na Rede

ceptrobr nichr egibr

Modos de configurar endereço IPv6

- Estaticamente
 - Configuração manual
 - Pouco escalável
- Exemplos
 - ip -6 addr add 2001:db8:abcd::1/64 dev eth0
 - ifconfig eth0 inet6 add 2001:db8:abcd::1/64
 - New-NetIPAddress -InterfaceAlias "Ethernet" -IPAddress
 2001:db8:abcd::1 -PrefixLength 64
 - netsh interface ipv6 add address "Local Area Connection"
 2001:db8:abcd::1

Modos de configurar endereço IPv6

- Dinamicamente
 - Autoconfiguração
 - SLAAC (Stateless Address Autoconfiguration)
 - DHCPv6 (Dynamic Host Configuration Protocol)
 - DHCPv6-PD (Prefix Delegation)

Tipos de configuração

- Stateful (DHCP)
 - Algum dispositivo (servidor) mantém o controle das alocações (logs)
- Stateless (SLAAC)
 - Não existe controle das alocações, cada dispositivo é responsável pela resolução de conflitos

SLAAC

- StateLess Address AutoConfiguration
- Mecanismo que permite a atribuir endereços unicast aos nós...
 - sem a necessidade de configurações manuais.
 - sem servidores adicionais.
 - apenas com configurações mínimas dos roteadores.
- Mas, não é possível saber o endereço criado de antemão

SLAAC

- Gera endereços IP a partir de informações enviadas pelos roteadores e de dados locais
 - Antigamente usava endereço MAC
 - Agora técnica de privacidade
- Gera um endereço para cada prefixo informado
 - Nas mensagens RA
 - Ou conhecido do link local (FE80::/10).

SLAAC

- Utiliza mensagens ICMPv6
 - Neighbor Discovery Protocol (NDP)
 - Router Solicitation (RS)
 - Router Advertisement (RA)
 - Flags
 - Prefix Information
 - RA pode ser enviado em resposta a RS ou periodicamente

Cliente local fe80::200:ff:feaa:0

Roteador local fe80::200:ff:feaa:1

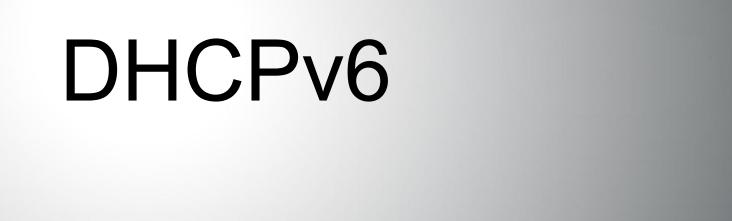
global 2001:db8::11/64

RS-Source IPv6 fe80::200:ff:feaa:0, Dest IPv6 FF02::2

Source Link-Layer Address

RA-Source IPv6 fe80::200:ff:feaa:1, Dest IPv6 fe80::200:ff:feaa:0

Prefix Information 2001:db8::/64 Source Link-Layer Address MTU


Outros

Endereço global 2001:db8::200:ff:feaa:0

Laboratório

Experiência 1.a SLAAC

Router Advertisement

ceptrobr nicbr egibr

DHCPv6

Dynamic Host Configuration Protocol

- Atribuição dinâmica de endereços IP
- Análogo ao DHCP para IPv4
- Melhor controle e gerenciamento dos endereços
- Otimiza o uso dos endereços
 - Possui um conjunto de endereços disponíveis
 - Quando solicitado, aloca um endereços para um dispositivo
 - Após o uso, o endereço é desalocado e retorna para o conjunto de endereços disponíveis
- Facilidade na entrega final de endereços

DHCPv6

- Pode ser indicado nas mensagens RA.
- Fornece:
 - Endereços IPv6
 - Outros parâmetros (servidores DNS, NTP...)
- Clientes utilizam para se comunicar com o DHCP:
 - um endereço link-local de origem
 - endereços multicast para destino (FF02::1:2 ou FF05::1:3).
- Clientes enviam mensagens a servidores fora de seu enlace utilizando um Relay DHCP

DHCPv6

- Os mecanismos de autoconfiguração de endereços stateful e stateless podem ser utilizados simultaneamente.
 - Por exemplo: utilizar autoconfiguração stateless para atribuir os endereços e DHCPv6 para informar o endereço do servidor DNS.
- DHCPv6 e DHCPv4 são independentes.
 - Redes com Pilha Dupla precisam de serviços DHCP separados.

Laboratório

Experiência 1.b DHCP

DHCPv6 stateful

ceptrobr nichr egibr

Dynamic Host Configuration Protocol - Prefix Delegation

- Não existente no DHCPv4
- Alocação dinâmica de prefixos IPv6
- Usam mesmas mensagens do DHCPv6
 - Adicionado "Identity Association for Prefix Delegation"

Dynamic Host Configuration Protocol - Prefix Delegation

- Não existente no DHCPv4
- Alocação dinâmica de prefixos IPv6
- Usam mesmas mensagens do DHCPv6
 - Adicionado "Identity Association for Prefix Delegation"

- Utilizada para distribuir prefixos de rede a roteadores
 - Roteador envia uma requisição de prefixo enviada para rede com destino a todos os servidores DHCPv6
 - Os servidores pré-configurados com um pool de prefixos respondem a este pedido feito pelo roteador enviando um prefixo IPv6
 - Ao receber esta resposta, o roteador fica encarregado de dividir o prefixo e redistribui-lo por suas interfaces para chegar aos seus clientes

local fe80::200:ff:feaa:0 global 2001:db8::10/64

ServidorDHCPv6 local fe80::200:ff:feaa:1

global 2001:db8::11/64

Solicit - Source IPv6 fe80::200:ff:feaa:0. Dest IPv6 ff02::1:2

Client Identifier Identity Association for Prefix Delegation Elapsed time

Advertise - Source IPv6 fe80::200:ff:feaa:1, Dest IPv6 fe80::200:ff:feaa:0

Client Identifier
Server Identifier
Identity Association for Prefix Delegation

Request - Source IPv6 fe80::200:ff:feaa:0, Dest IPv6 ff02::1:2

Client Identifier Server Identifier Elapsed time Identity Association for Prefix Delegation

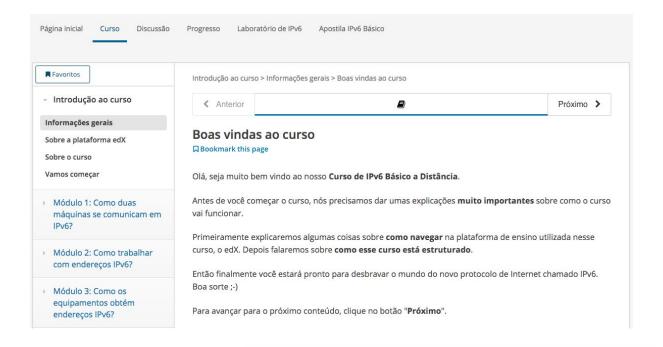
Reply - Source IPv6 fe80::200:ff:feaa:1, Dest IPv6 fe80::200:ff:feaa:0

Client Identifier
Server Identifier
Identity Association for Prefix Delegation

Prefixo Recebido 2001:db8:cafe:f00::/56

Laboratório

Experiência 1.c DHCP-PD


DHCPv6 Prefix Delegation

Como ficar por dentro do assunto?

- Curso a Distância
 - http://saladeaula.nic.br

- Site
 - http://ipv6.br

Saiba mais!

IX Fórum: Existe vida após o esgotamento do IPv4

https://www.youtube.com/watch?v=A8WhH8AHGaY

Saiba mais!

https://intrarede.nic.br/

Saiba mais!

Camada 8

Projetos - CEPTRO.br

- IntraRede: Lives focado em debater assuntos sobre Infraestrutura da Internet
 - https://intrarede.nic.br/
- Camada 8: Podcast sobre infraestrutura da Internet, redes e tecnologia.
 - https://www.nic.br/podcasts/camada8/
- **Semana de Capacitação:** Minicursos relacionados à Internet e redes. Totalmente gratuito e ministrado durante 5 dias. Uma oportunidade para os provedores e administradores de rede.
 - https://semanacap.bcp.nic.br/
- Cidadão na Rede: Espalhar e incentivar boas práticas relacionadas à cidadania digital;
 - https://cidadaonarede.nic.br/pt/
 - Empresas e organizações podem se tornar parceiras desta iniciativa.

Dúvidas

Obrigado ipv6.br

wanderson@nic.br

20 de agosto de 2025

nichr egibr

www.nic.br | www.cgi.br